Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy)
نویسندگان
چکیده
BACKGROUND The area of Milazzo-Valle del Mela (Sicily, Italy) is considered at high risk of environmental crisis by regional authorities. OBJECTIVE To measure oxidative-stress, DNA repair and detoxification genes in school children living near the industrial area and in age-matched controls. METHODS The parent study was a biomonitoring investigation evaluating heavy metal urine levels in 226 children aged 12-14 years, living in the high risk area, and in 29 age-matched controls living 45 km far from the industrial site. In the present study 67 exposed adolescents and 29 controls were included. Samples were analyzed for urinary 8-hydroxydeoxyguanosine (8OHdG) levels, and gene expression of OGG1 (DNA repair gene), NQO1, ST13, and MT1A (detoxifying genes). RESULTS Urinary cadmium was higher (p = 0.0004) in exposed [geometric mean, 0.46 µg/L; 25th-75th percentile: 0.3-0.56] than in control adolescents [geometric mean, 0.26 µg/L; 25th-75th percentile: 0.2-0.3]. Chromium was also significantly elevated in exposed [geometric mean, 1.52 µg/L; 25th-75th percentile: 1.19-1.93] compared with controls [geometric mean, 1.25 µg/L; 25th-75th percentile: 1.05-1.48; p = 0.02]. Urinary 8-OHdG concentration was greater in exposed than in controls (71.49 vs 61.87 µg/L, p = 0.02), and it was correlated with cadmium levels (r = 0.46, p < 0.0001), and with the combined exposure index (r = 0.43, p < 0.0001). Moreover, cadmium levels showed a robust correlation with OGG1 and MT1A gene expression levels (r = 0.44, p < 0.0001; r = 0.39, p < 0.0001, respectively). Finally, OGG1 and MT1A were over-expressed in adolescents from Milazzo-Valle del Mela area compared with controls (p = 0.0004; p < 0.0001, respectively). CONCLUSIONS Continuous exposure at relatively low concentrations of heavy metals is associated with increased oxidative DNA damage and impaired expression of DNA repair and detoxification genes in adolescents.
منابع مشابه
Levels of Heavy Metals in Adolescents Living in the Industrialised Area of Milazzo-Valle del Mela (Northern Sicily)
In the Milazzo-Valle del Mela area, the presence of industrial plants and the oil refinery make local residents concerned for their health. For this reason, we evaluated the levels of heavy metals in 226 children aged 12-14 years, living in the 7 municipalities of the area. A control age-matched population (n = 29) living 45 km far from the industrial site was also enrolled. Arsenic, cadmium, c...
متن کاملOGG1 DNA Repair Gene Polymorphism As a Biomarker of Oxidative and Genotoxic DNA Damage
Background: Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this stu...
متن کاملMetal-Induced Oxidative Stress and Cellular Signaling Alteration in Animals
Contamination by heavy metals has attracted increasing attention considering the ability of these elements in producing serious consequence to ecosystem, and especially on animals health. Due to their widespread use in human activities such as industry, agriculture and even as medicine (e.g. arsenic, selenium and platinum), numerous health risks may be associated with exposure to these substanc...
متن کاملComparison of MAPK and thioredoxin gene expression in wheat seedlings exposed to silver nitrate and silver nanoparticle
The extensive use of heavy metals and nanoparticles (NPs) has led to their release into the environment that might have negative impacts on both organisms and the environment. In this study, the molecular responses of wheat seedlings to silver nitrate and silver nanoparticles (AgNPs) were assessed by transcript accumulation analysis of genes coding for products potentially involved in heavy met...
متن کاملStress response in cyanobacteria
Cyanobacteria are an important source of natural products. In this article, we briefly review the responses of cyanobacteria to different stresses. Abiotic stresses (temperature, salt, heavy metals, metalloid and ultraviolet (UV) influence cell growth and metabolism in cyanobacteria. Salt stress is a major abiotic factor that decrease...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2014